
www.manaraa.com

Building graphic user interfacesfor Computer Algebra Systems.Norbert KajlerINRIA, Centre de Sophia-Antipolis2004 route des Lucioles, 06565 Valbonne Cedex, FrancePublished in LNCS 429 Proc. of DISCO'90, pages 235-244, Capri, Italy, April 1990. Springer-Verlag.1 IntroductionA quality user interface is nowadays a crucial element for a Computer Algebra System (in the sequel :CAS). First, it makes the use of main functionalities much easier for students and casual users. Second,it gives access to the whole range of possibilities of the system and makes programming easier for expertusers. In all cases, it highly improves the visual comfort and o�ers many advantages during formulaeediting. The aim of this paper is the concise study of the need for a CAS user interface. Furthermore,it represents an important and prior step to any e�ective realization.2 Description of the existing user interfacesAccording to their user interface, CAS can be classi�ed in two large groups. The �rst one works ontraditional video display terminals, inputs are typed on the keyboard and displayed in one-dimensionalform, outputs are displayed in a pseudo two-dimensional form using alphanumerical characters combi-nations. Macsyma , Maple , Reduce , and Scratchpad II systems support this kind of interface.The second one needs a high de�nition graphical terminal with a pointing device (mouse), the displayof both inputs and outputs are in two dimensions, formulae are drawn with accuracy, and the mousecan be used to select subexpressions from previous inputs or ouputs and insert them in the currentedited formula. Few systems already include such an interface; however we can think of : GI/S [22],Mathematica [21] and MathScribe [17, 20]. Of the above, GI/S and MathScribe are the onewhich have the most sophisticated user interface. More precisely, they are both user interfaces builtupon traditional CAS, namely Macsyma and Reduce. In order to have a reference for the sequel,we will begin by studying the main characteristics of MathScribe.MathScribe is a graphical man-machine interface for the Reduce system. It enables the user toopen many kinds of windows by pressing buttons on a control panel driving the whole interface. In eachwindow, mathematical formulae appears in a specialized editor which includes the following possibilitiesand features : real time two dimensional edition, cut and paste, scrollbars, undoing, substitutions, localand global abbreviations, structured edition by menu. MathScribe also enables one to visualize theReduce ags in a separate window, to generate some EQN or TEX code from a formula, and toplot two or three dimensions graphs. MathScribe requires an extensive use of the mouse to selectsyntactical structures through menus. Nevertheless, it is possible to type alternative keyboard formsduring edition. The error messages from the interface are presented in a terminal emulator which canalso be used as a traditional textual interface with Reduce. The setting of interface parameters islimited to static modi�cation of some elements of the visual aspect of the interface (colors, fonts, anddimensions of the windows). Moving or enlarging a window requires the use the window manager.Buttons for iconi�cation and lowering are provided for each window.



www.manaraa.com

3 Problematic of the man-machine interfaceGI/S and MathScribe are the �rst examples of a sophisticated graphical user interface for a CAS.They eases the Macsyma or Reduce systems access and bring a great deal of visual comfort.However, many heterogeneous requests about user interface are brought up by di�erent kinds ofCAS users. An improved user interface would increase the use of CAS to various areas like education,engineering, and mathematical research. Consequently, the next step is to develop speci�c interfacefor each speci�c domain. At the same time, new software engineering techniques have been developed,including complex tools like graphical syntax-directed editors, and toolboxes for man-machine interfacedesign. That is why a new methodology including the use of up-to-date software tools, and thegeneration of some important parts of the interface is now an interesting alternative to directly codingthe interface in C for a particular CAS (as it is the case with MathScribe).3.1 Existing toolsBuilding a man-machine interface for a CAS raises two major di�culties. The �rst one lies in editingformula in two dimensions. The second one deals with consistently combining a bunch of basic com-ponents such as editors, menus, graph plotters and so on. Related to these problems, more and moretools, including programming environment generation, are available and their development becomesone of the major challenges for the beginning of the next century. Some of these tools will be presented,including examples of available software and research projects under development.Nowadays there are sophisticated editors of formulae such as Grif or The Publisher, as well asgenerators of graphical language based syntax-directed editors which can adapt to the handling ofmathematical expressions. Gigas [5] is a prototype of it. It was built above the Cornell SynthesizerGenerator [19]. It enables the generation of structured graphical editors by compiling an attributedgrammar written in the Synthesizer Generator formalism. The drawing is the result of an incrementalcalculus on the semantical attributes included in the grammar. The whole works in an X WindowSystem environment. Similarly, a system such as Centaur [11], designed to the generate programmingenvironments, should in the future include such a tool. Among the commercialized systems we canalso think of Graspin [1].Most of the existing interfaces are directly built above toolboxes. A toolbox (also called toolkit) isa collection of high level functions based above the lowest level routines of a windowing system. Therenow exists a very large number of toolboxes. Some of them are proprietary (for instance the toolbox ofthe MacIntosh , that of the NeXT Machine, or those of the Lisp machines by Symbolics ). Some othersare linked to X Window System (Athena Toolkit [18], OSF/Motif [15], InterView [13], CLUE1 [12],etc). The last ones are independent of any windowing system and may be adapted to several computerenvironments (Workstations, MacIntosh, IBM PC, etc). An example is A��da [9], built on the LeLisplanguage. These toolkits are also di�erentiated by their programming language (C, C++, ObjectiveC, Smalltalk or Lisp), their general conception (use of object-oriented programming for instance), andtheir content (some of them o�er many variations to the basis graphical objects, some others includespecialized display machines such as tree or vector editors).Beyond the toolboxes, another kind of tool appears [14]. It is frequently named UIDS (User InterfaceDesign System). The prototype is SOS Interface [8] (written in Lisp on MacIntosh.). For a short timea tool of this kind has been commercialized by the Ilog �rm (which markets LeLisp and A��da) :Masa�� [10]. It is a graphical user interface editor which generates A��da code. Masa�� itself includes auser-friendly graphical user interface which enables one to realize interfaces rapidly and interactively.Moreover, the code generated may be hand-altered by editing the corresponding A��da program or editedagain under Masa��. Of course, that greatly improves the ability to modify or adapt such a generatedinterface. Examples of UIDS also exist for the Lisp Machine. In the X Window System domain many1CLUE (Common Lisp User Interface Environment) is an object-oriented programming system suitable for developinguser interfaces in Common LISP under X Window System. It is built above CLOS (Common Lisp Object System) andCLX (Common Lisp programmer's interface to X).



www.manaraa.com

tools are under development (such as Egerie [2]). There is also an equivalent tool already available forthe NeXT machine : Interface Builder.A more general approach is proposed by the man-machine dialogue specialists through the conceptof UIMS (User Interface Management System) [4, 16]. This time the point is to divide the user interfaceunder the form of three modules made up in layers which strongly separates the application from itsinterface. The communication between one layer and another is done in an asynchronous way byfunction calls. The three modules have speci�c roles. The �rst one is the \application interface". Itsrole is to ensure the communications between the application and the other parts of the interface. In asystem such as Serpent [3], it consists of a shared data base of the variables of the application usable bythe user interface. The second one is the \Dialogue Control". It is responsible for all interactions whichneed no semantical control (such as the syntactical checking of the data given by the user) and imposesthe behavior of the interface (the \feel"). The third module is the \Presentation Manager", it carriesout the display operations and manages the visual aspect of the interface (the \look"). Correspondingto the UIMS concept we �nd development environments integrating speci�cation languages which allowone to generate interfaces on this model. Such complete and operational tools are rare; however manystudies are being held. As an example we shall mention the Alberta UIMS [7], Serpent [3] and UIMX.3.2 MethodologyThe techniques of man-machine interface have greatly progressed from the conception ofMathScribe.That is why a new approach seems desirable to create user interfaces meeting the constraints ofportability and upgrading capability.Indeed, instead of designing the user interface under the form of a graphical extension of a givenCAS, we can begin with the users' needs to realize a precise speci�cation of the desired interface. Thisis advantageous as it yields an interface largely independent of a particular system. The second stepshould consist of building an interface meeting these speci�cations for a target CAS. It is carried outby bringing into play the best suited software tools available. These tools must be chosen accordingto the needs expressed in the speci�cations. Moreover they evolve very quickly; hence separating theinterface from the CAS allows one to derive bene�ts from the progresses realized by these tools.The advantages brought by the use of generating tools are well known : much higher productivityduring the interface developing, reliability of the code, and the possibility to quickly and easily modifythe code by altering the high level language used by the generating tool instead of the code itself. Inreturn we must mention the risks of ine�ciency and memory space wastage when the chosen tools arenot optimized. However the positive evolution of workstations (both in terms of powers and memoryspace availability) and the coming of industrial versions of these software tools enable us to foresee thesuccess of this approach. Furthermore, we must note that most of these tools are themselves underdevelopment. But the needs related to CAS interfaces are complex enough to interest the designers ofthese tools and to realize their perfection.Thus the development of a man-machine interface for a CAS sets a new problem. It consists �rstin clearly de�ning the needs. This is the aim of the remaining part of this paper. Then the point willbe to study in details the di�erent tools, participate in their perfection and �x the choices related tothe e�ective realization of the interface.4 Speci�cation of the needs for the user interface4.1 Elementary manipulation of formulaeMultiple window editing of 2D formulae display is provided both through the keyboard and mouse-based events. Editing is interactive and real time on the screen, while interaction with the CAS resultsfrom plain request by the user.� Formulae displayThe point is to take advantage of the high resolution graphic screen to display formulae in



www.manaraa.com

the most pleasant form for the user, without performance penalty or additional constraints. Aquality display implies the use of di�erent size character sets and accurate positioning of graphicalcomponents. To be e�cient the display must be made in an incremental way (i.e. only modi�edparts of a formula must be refreshed on the screen). This is not a trivial problem as small changesmade in a complex formula can bring about major revisions of the whole formula drawing.� Cursor scanningThe cursor is a graphical symbol pointing out, on the screen, the place of the formula which islikely to receive the next insertion (there is one cursor in each editing window). Unlike traditionaleditors, it does not perform scanning left to right and top to bottom , but follows the syntacticalstructure of the formula.� Editing with the mouseThe mouse is intended to act globally : it makes block manipulation easier. The following editingfacilities must be done easily and accurately with the mouse : positioning the cursor at the mouselocation, selecting a block, and other usual block manipulations like cut and paste.� Marked blockThis is a concept local to the interface. For the user, the goal is to select, using the mouse, asub-formula in a mathematical editing window. Once marked, the block can be easily seen (forinstance, it may appear in a rectangular colored area) and is used as an implicit parameter for alarge number of operations (erase, copy, print, etc).� Editing with the keyboardThe keyboard is the most suitable device for the manipulation of elementary lexical units. It isused for moving the cursor throughout the formula, and deleting or inserting textual elements.The highest number of sophisticated interface functionalities must also be usable from the key-board. More, the bindings of the editing commands with the corresponding key sequences maybe altered and displayed in a window.� \Undoing"During the edition of a mathematical formula, it is handy to be able to go back step by step, inorder to retrieve the formula as it was at each stage of the edition (as the undo command of atext editor does). This mechanism will have to work separately in each editing window, and isindependent of the history, which deals with the requests and the results of the CAS.� Transmission of the formula to the CASIt happens on an explicit command and concerns the expression edited in the active window. Asedition is syntax directed, the expression won't be transmitted to the CAS unless it is syntacticallycorrect. The feedback expression sent in answer by the CAS could be displayed either followingthe request (as it is for all traditional CAS), either in another window dedicated to the answersof the system (and laterally pained with the �rst one) or in the same location, replacing therequest.4.2 Manipulation of complex formulaeA CAS usually handles very large formulae (thousands of characters). In most cases, displaying themjust as they are is useless. So, an essential capability of the interface will be to master the size of thesecomplex formulae in order to make them readable and suitable.� Displaying of long formulaeThe problem is to display expressions longer than the width of the editing window. Accordingto the user preferences, the expressions will be either cut in accordance with caesura rules usedby mathematicians (like Macsyma does), either partially displayed, with the window linked to



www.manaraa.com

a horizontal scrollbar (solution adopted in MathScribe), or printed on a single line, withoutscrollbars, and using the reduction mechanism.� Reductions and expansionsThe point is to substitute to a block in a formula a graphical object which denotes the initialobject. The icon created will include a generated piece of text, according to the nature of thereplaced subexpression (Sum[100], Cos(...) or Matrix[20,20] for example). The expansion maythen be achieved directly by spotting with the mouse, or indirectly with the magnifying glass.� Local abbreviationsThe matter is to substitute, locally in a formula, all occurrences of an expression by an abbre-viation. The expression corresponds to the marked block. The abbreviation can be typed onthe keyboard in a dialogue window or be set to a default value (LOCALi if i is the i-th localabbreviation requested for the current formula).� Simple local abbreviationsThey work on the same model as local abbreviations except that only the marked area is sub-stituted by the abbreviation. The default value is : LOCAL}i , the } (for partial) symbol recordsthat the substitution was not applied to all occurrences.� Global abbreviationsThe principle is the same as for local abbreviations excepted that the couple abbreviation/contentis de�ned globally, and is then available in each editing window. The default value is ABBREVi.The index numbering being also common to the whole application.Two commands realize global abbreviations : the �rst one consists in abbreviating the markedblock (this de�nes a new couple abbreviation/content). The second one consists in realizing allpossible substitutions of subexpressions according to the abbreviations already de�ned.All the couples corresponding to de�ned global abbreviations may be displayed in a window bypressing a button on the main control panel.� Simple global abbreviationsThey work the same way as global abbreviations, except that the subject of the substitution isthe marked block only. The default value is : ABBREV}i .� The magnifying glassThe magnifying glass is a graphical feature made for displaying in a separate window the contentof a reduction or abbreviation. It is selected by pressing a button on the main control panel andchanges the design of the cursor onto a kind of magnifying glass. The user can drag it abovean icon corresponding to a reduction or an abbreviation, and click on the mouse button to geta new window with the content of the abbreviation inside it. Such magnifying windows can beeither killed at the release of the mouse button, or \pined up" on the screen.4.3 Global manipulations� The scratch paperA window named \scratch paper" is available by clicking a button on the main control panel.Its use is to collect parts of formulae cut by the user in mathematical editors. These parts offormulae may be syntactically incorrect and could be freely manipulated on the scratch paper.� Previously marked block managerMost of the advanced interface functionalities use as argument the expression contained in themarked block. For this reason, it would be useful to keep the last marked blocks in memory.Help could be provided by a graphical component managing the current and previously markedblocks. For example, this could be done by a window including on the right the current markedblock and on the left a sub-window linked to a vertical scrollbar displaying in �ve buttons the



www.manaraa.com

�ve previous marked blocks in an iconic form. Clicking on one of the �ve buttons would changethe current marked blocks. Using the scrollbar would allow the retrieval of the oldest markedblocks. Such a mechanism presents two major advantages : it makes edition easier for the userwho can access �ve permanently updated blocks, and it increases the feeling of security duringcomplex manipulations (a block erased accidentally remains available for a while).� Using the historyThe history mechanism is similar in systems such as Macsyma or Maple and in MathScribe.It enables the user to retrieve and use in the currently edited formula the previous or the n-thexpression given to the CAS. To generalize the use of this facility it seems desirable to bringthe following improvements : pattern-matching based research, insertion of comments usable asresearch keys. More, the history must be connected to a kind of vertical scrollbar.� ScrollbarsEach mathematical window includes two kinds of scrollbar. The �rst one is horizontal and issuited for a latteral scan of the formula. The second one is vertical and is linked to the history. Itis desirable to let the user chose between connecting the vertical scrollbar to the requests, to theanswers or both (like inMathScribe). In e�ect when the results are long a scrollbar exclusivelyconnected to the requests is best suitable for a research in the history. In return, retrieving aprecise result is easier if the scrollbar is connected to the results only.� Comments usageIn addition to the comments used in the history mechanism, it may be useful to attach anotherkind of comments to any object of the CAS. This is particularly true inside an unorganizedstructure such as the scratch paper. These comments will be a concept local to the interfaceand will never be transmitted to the CAS. For each elementary lexical unit (as a number or anoperator), it will be possible for the user to create, modify and erase comments freely and at anytime. The comments will be displayed in a particular font. Furthermore, they could be iconi�edby clicking on them with the mouse.4.4 Utilization of a command languageAll CAS include a command language which enables one to master all the possibilities of the system.The user interface will have to provide specialized tools to ease the use of this command language.� syntactical editionIn the mathematical windows the edition of expressions will be directed by the syntax of thecommand language. This includes the edition of mathematical formulae.For the interface this implies a precise knowledge of the syntax of the manipulated form andan abstraction level superior to a simple characters editor. The objective is to apply powerfultreatments to the edited text, such as dynamical veri�cation of the syntactical validity. Forthe user that means that the editor will try for each recognized lexical unit to match the textwith a valid syntactical pattern. Thus, the editor will be able to reject unacceptable syntacticalunits in a given context. It will also be able to insert empty blocks that the user will have to�ll. Moreover, the editor will take advantage of its syntactical knowledge to anticipate the userstroke. For instance, after the the character �
 �	^ is typed, the cursor will go up and the editorwill expect an exponent entry.Hence the use of a syntax-directed editor presents numerous advantages : the guaranty of thesyntactical validity of the expressions given to the CAS, the automatic indentation of the expres-sions, the anticipation of the user stroke and the correct positionning of the cursor.� syntactical scheme generationClicking in an edition window will cause menus to pop-up o�ering sub-formula schemes. Theseschemes correspond to the di�erent constructions available in the command language. Selecting



www.manaraa.com

a scheme with the mouse will make it appear at the cursor location. Here are for instance thesyntactical scheme corresponding to an unde�ned integral : RR expr d varThese menus will make the edition of complicated mathematical formulae easier and faster. Atthe same time they will o�er a quick view on all possible constructions of the CAS commandlanguage and will constitute a tempting alternative to the lecture of the documentation.These syntactical schemes will also be automatically generated and displayed during keyboardedition, with the editor identifying the beginning of a known lexical unit.� Interactive help for the programmerWhen programming a system like Macsyma or Scratchpad II the advanced user has to facea great number of concepts : very long list of available modules, complicated graph of types,existence of thousands of functions, etc. That's why the user interface has to provide adaptedtools for quick scanning in the on-line documentation. Many ways are possible : use of patternmatching for the look-up of an identi�er name, function name completion, fast access to thetechnical documentation, etc.More, the interface can provide assistance for the use of the debugging facilities of the commandlanguage. At the very least it will include a graphic version of debug or trace commands.4.5 Usage of the colorColor is helpful for immediate perception of the main components of the interface. It is essential toestablish for the whole application, a constant relation between a color and an identical concept ofthe interface. It is also important to limit the number of colors simultaneously present on the screen.This will allow a faster reading based on the contrast of the colors. When many applications aresimultaneously present on the screen, using a uniform subset of colors also makes the quick identi�cationof the windows composing the CAS interface easier. More, the user interface will have to be usable onmonochrom screens. That is why the colors will never carry supplementary original information butwill be strictly used to emphasize existing concepts.4.6 Communication with the CASAll the information about the system must be complete, widely available and easily understandable.In the same way, commanding the system must be simple and handy for an unexperienced user. Menusor control panels, o�ering all the possibility linked to a particular concept, will be available each timethese possibilities can be known in advance.� Main control panelA window named \Main control panel", always present on the screen, drives the system. It isused to display essential informations about the System and gathers the buttons correspondingto the main functionalities of the interface. Each button, in addition to the name of the triggeredaction, includes a complementary graphical indication on the nature of the corresponding e�ect(instant action, scrolling of a menu, opening of a dialogue box, etc). In the case of a menu ora dialogue box, the current and the default value will be displayed nearby the button on thecontrol panel and will be reminded in the menu or the dialogue box.� Global variables of the CASA window must enable one to visualize and modify all the global variables of the system. Thiswindow will come in the form of a chart, each line presenting the following information : name ofthe variable, current value (editable), value by default and indication on all the possible values(for example : boolean, numerical interval, string of characters, etc).� Access to the documentationThe documentation of the CAS must be available for consultation at any time and the way to doit must be easy and obvious. To do this the main control panel will include a \HELP" button.



www.manaraa.com

Its e�ect will be to pop up a menu o�ering the two following possibilities : to select and displaythe di�erent sections of the on-line CAS reference manual or to get a speci�c help by pointingout with the mouse a function or a global variable. The di�erent elements of the interface shouldalso be self-documented. That is why it should be possible to use the \HELP" button to get aninformation on a precise concept of the interface.� Algorithms drivingThe command language of the CAS must o�er the one who programs an algorithm the opportu-nity to communicate with the user during the execution of the code.Some complex algorithms such as Knuth-Bendix or Gr�obner' basis, derive some bene�ts from aninformation exchange between the system and the user. Thus the program can inform the userof the achieved steps and show intermediate calculation results. This can interest the user whocan manually modify some important parameters during the execution. In some other simplercases the program may only tell the user about the launching of a particular subroutine or warnthat the coming calculation may take a long time.The interaction between the program and the user can be designed according to two di�erentways : either as a dialogue exclusively mastered by the calculator (the program keeps the userinformed and asks him to take some decisions), or as a driving of the algorithm by the user (theprogram keeps the user informed by regularly displaying some variable contents or plotting agraph, and the user can at any time impose his options by pressing buttons).Concerning the interface, this technique will require a dedicated window linked to the algorithmcode execution. Besides, the options chosen by the user during calculation will be memorized inthe history. A particular symbol will go with the requests which have generated such choices.This symbol will also be used as a switch to visualize the options corresponding to a request ofthe history. Concerning the algorithm, the one who codes it, will have to integrate relativelysimple instructions into the program allowing the interface to generate the dialogue window.These instructions will indicate the kind of dialogue desired, the information to be displayed andthe buttons to create with the corresponding actions.� Plotting graphsA button on the main control panel must ease the use of the plotting facilities integrated in theCAS. The e�ect of clicking this button will be to pop up a dialogue window linked to the plotwindow where the graph will be displayed. The dialogue window will help the user to point outan equation and the di�erent parameters needed by the plot program.4.7 External communicationIn most cases, the user wants to transfer a formula to another application or a printer. On someoccasions, the subject of the transfer can be di�erent : algorithms, session abstracts, hardcopies of awindow or of the screen, etc. In all cases, the interface must o�er a fast and easy way to realize thiskind of manipulations.Thus, we could have three buttons on the main control panel. The �rst two buttons would pop twomenus onto the screen. Selecting in the �rst one would assign an output format (TEX, PostScript, C,Fortran, Lisp, etc.), selecting in the second one would de�ne an output channel (�le, printer, X WindowSystem cut bu�er, etc.). Then, the transmission of the content of the marked block would be doneby clicking on the third button. Once selected, the output format and channel would be permanentlydisplayed nearby the transmission buttons.Beyond these possibilities, we can imagine a mechanism which would enable the user to writeand to integrate into the interface a function generating code in a particular output format from aninternal reference format, syntactically simple and semantically lightened (a Lisp format for example).This would allow the user to establish a communication between the CAS and an application with aparticular input format (a spreadsheet or a data base for instance).



www.manaraa.com

4.8 Help in the writing of scienti�c textsThis is a particular case of communication between the CAS and an external application (text editor).The aim is to answer to three wishes expressed by many CAS users. The �rst one is the plainintegration to a document of a formula obtained with the help of the CAS. The second one is theinsertion of a �gure (such as a curve drawn by the CAS in a window or just a screen copy). The thirdone is the generation of a CAS session abstract. This could work in the following way : when given arelevant sequence of couples request/answer, freely selected in the historics of mathematical windows,the system would automatically generate the abstract (in TEX or PostScript format).4.9 Relation with the window managerUnder X, the following actions : move (the moving of a window), resize (enlargement or contraction)and iconify, (substitution of a window by a graphical icon), are usually uniformly carried out throughthe window manager. However, the programmer has to write, if necessary, the non-standard methodsto achieve each of these actions on the di�erent kinds of windows which make up the interface. Thiswill be the case for the windows including formulae editors. In all cases, it is important that the CASinterface has a familiar look and feel, and is driven by the user's preferred window manager.4.10 Parametring the interfaceBeyond the possibilities o�ered by the window manager, a large subset of visual characteristics of theinterface might have to be modi�ed by the user. This includes : fonts, colors and default window sizes.Moreover, one should be able to carry out some choices dynamically : the use of one or two windowsfor the dialogue with the CAS, the criteria of caesura of the too long formulae, etc.5 ConclusionThe absence of convenient graphical man-machine interface has certainly been a serious obstacle tothe broadcasting of CAS in the scienti�c community. Today, the available powerful workstations andsoftware tools for the interface developers allow the creation of more and more sophisticated graphicalinterfaces for an acceptable cost in term of developing e�ort. The main problem with realizing such auser interface for a CAS is to satisfy the desire for quality : respecting the typography and the habitsof work, while presenting a set of performant and user-friendly tools.The aim of this document was to give a preliminary impression of what a CAS user interface couldlook like in the near future. It does not constitute the speci�cation of the best imaginable interface fora CAS, but just a picture of the needs expressed by the users. In the framework of the Sa�r projectat Inria, it will be used as a model for the speci�cation of the user interface of Sisyphe [6].This paper also presented a development methodology based on the use of high level software tools.From this point of view, the next step of our work will discover new problems. After evaluating them,the point will be to choose among all the existing software tools adapted to our problem, those whichare able to be integrated in a large system, and are e�cient enough to produce a useful interfacecorresponding to the initial speci�cations.References[1] M. Bologna, M. Chesi, S. Mannucci, I. Montanelli, P. Torrigiani, and N. Zu�. The kernel systemof Graspin. In CASE 87, Cambridge, MA, 1987.[2] V. Bouthors and V. Jolobo�. Editeur d'interface EGERIE. Rapport interne du centre de recherchebull, Bull, September 1989.



www.manaraa.com

[3] Carnegie Mellon University Software Engineering Institute. SERPENT overview. Technical ReportCMU/SEI-89-UG-2, Carnegie Mellon University, August 1989.[4] J. Coutaz. A layout abstraction for user system design. ACM SIGCHI, pages 18{24, January1985.[5] P. Franchi-Zanettacci, B. Chabrier, and V. Lextrait. GIGAS: a graphical interface generator forattribute speci�cations. In Actes du colloque \Le G�enie logiciel et ses Application", Toulouse,December 1988.[6] A. Galligo, J. Grimm, and L. Pottier. The design of SISYPHE : a system for doing symbolicand algebraic computations. In A. Miola, editor, LNCS 429 DISCO'90, pages 30{39, Capri, Italy,Avril 1990. Springer-Verlag.[7] M. Green. The University of Alberta user interface management system. In ACM, editor, Com-puter Graphics, pages 205{213, San Fransisco, July 1985. SIGGRAPH'85.[8] J. Hullot. SOS interface: Un g�en�erateur d'interfaces homme-machine. In Actes des journ�eesAFCET sur les Langages Orient�es Objets, pages 69{78. Bulletin BIGRE+GLOBULE, January1986.[9] Ilog, S.A. A��da, environnement de d�eveloppement d'applications, March 1989. Version 1.3.[10] Ilog, S.A. Masa��, L'outil de d�eveloppement interactif d'interfaces graphiques, 1989. Version 1.0.[11] G. Kahn et al. CENTAUR: the system. In E. Brinksma, G. Scollo, and C. Vissers, editors, Proc.of 9th IFIP WG6.1. Intern. Symp. on Protocol Speci�cation, Testing and Veri�cation, 1989.[12] K. Kimbrough and O. LaMott. Common Lisp User Interface Environment. Texas instrument,Inc., February 1988.[13] M. A. Linton, P. R. Calder, and J. M. Vlissides. InterViews: A C++ graphical interface toolkit.Technical Report CSL-TR-88-358, Stanford University, July 1988.[14] B. A. Myers. Tools for Creating User Interfaces: An Introduction and Survey. Technical ReportCMU-CS-88-107, Carnegie Mellon University, January 1988.[15] OSF/Motif. OSF/Motif Programmer's Guide, Programmer's Reference Manual & Style Guide,Open Software Foundation edition, 1990.[16] G. R. Pfa�. User interface management systems. In Proceedings of the workshop on user interface,Seeheim, FRG, November 1983. Springer.[17] C. J. Smith and N. M. Soi�er. MathScribe: A User Interface for Computer Algebra Systems. InACM, editor, Conference Proceedings of Symsac 86, pages 7{12, July 1986.[18] R. R. Swick and T. Weissman. X Toolkit Athena Widgets, MIT edition, 1988.[19] T. Teitelbaum and T. Reps. The Cornell program synthesizer: A syntax directed programmingenvironment. Communications of the ACM, 24(9):563{573, September 1981.[20] Tektronix, Inc. MathScribe User's Manual Version 1.0, 1988.[21] S. Wolfram. Mathematica, A System for Doing Mathematics by Computer. Addison-Wesley, 1988.[22] D. A. Young and P. S. Wang. GI/S: A Graphical User Interface For Symbolic ComputationSystems. J. Symbolic Computation, Academic Press, 4:365{380, 1987.


